ABSTRACT

Distance protection schemes are used in the protection of transmission and distribution lines and they use distance relay in their operations. The protection scheme is always partitioned into two or more zones and each zone is a certain percentage of the entire length of the line (which may also include the next line). With all things being equal, the tripping of the relays is solely a function of the zones where the fault occurred, that is, the location of the occurrence of the fault. However, it has been shown in this paper through simulations in Power System Computer-Aided Design (PSCAD) that for a LLG fault on the line (in Zone 1), the distance relay/protection system tripped inaccurately in Zone 2 for a fault impedance of 0.1Ω, 0.5Ω and 5Ω and trips accurately in Zone 1 for fault impedance of 1Ω, and 10Ω for the same type of fault and same location. Also, for a fault impedance of 0.1Ω, the system tripped at Zone 1 for LL and 3 phase faults and tripped in Zone 2 for LG and LLG faults for the same fault impedance and at the same location. This indicates that tripping zone in distance protection schemes are not solely dependent on fault locations but also slightly dependent on the fault impedance and type of fault.

Keywords: Effects; variations; fault type; fault impedance; distance protection.

1. INTRODUCTION

Faults in power systems are short circuit that occur when the insulation of the systems fails thereby causing a low impedance path either between phases or phase(s) to ground (Rao, 2007; Obi et al., 2015; Obi et al., 2016; Obi et al., 2022). The consequences of these faults if not cleared ranges from damages to equipment, injury or even death of personnel and instability in the network (Gupta, 2005; Chen et al., 2021; Jeevan, 2022; Oputa et al., 2023). Hence, a lot of efforts has been made to isolate any faulty part of the circuit when a fault occurred in such area. The protection with fuses and manual circuit breakers were the first to emerge at the end of the eighteenth century. The use of relays to protect power systems began with the overcurrent protection scheme with the overcurrent relay. Under-voltage and over-voltage relays (working on the same principles as the overcurrent relays) (Nwachi et al., 2022) are now in use. In this overcurrent protection system, the time dial setting (TDS) determines the actual operating time of the relay while plug setting multiplier (PSM) determines the required amount of current values with which the relay is to pick up. However, finding optimum values of TMS and PSM of this relay must be well coordinated, else the relay may malfunction. Different algorithm/optimization techniques have been put forward to obtain optimal TDS and PSM of the relays. These include a new metaheuristic algorithm, the JAYA algorithm and the simplex method firefly algorithm (Noghabi et al., 2009; Bedekar et al., 2010; Pragati and Amol, 2017; Sergio et al., 2021; Michele et al., 2022). However, the fact that the operating time and pick up values of the overcurrent relays depend on the fault current which varies with the fault type and circuit characteristics, the overcurrent relay and protection scheme was less attractive in protecting high voltage systems (grids) where different power plants and load centers are interconnected. This is because any malfunction of this relay may cause instability in the concerned grid (Keil and Jager, 2008; Mahat et al., 2011; Funlayo et al., 2012; Venkatanagaraju and Biswal, 2022; Gupta et al., 2023).
This led to the emergence of the distance relays and protection scheme (Obi et al., 2014) which operates when the impedance seen by the relay is less than the predetermine/set impedance of the relay. The relay calculates the seen impedance by extracting the voltage and current from the complex post – fault waveforms (Murthy, 2007; Mohammed and Ciohotaru, 2022). Different algorithm has been put up by different researchers in extracting the voltage and current from the complex post – fault waveform. The least squares matrix pencil algorithm of extracting the complex fault current and voltage waveform parameters makes use of the function model that makes square fitting (Suonan et al., 2010; Khaled et al., 2023). However, under this condition the function model of the input signal is given in advance which stands as a strong problem of this algorithm. Another algorithm developed was the fast Fourier transform algorithm with full cycle window to remove the DC offset value (contained in power line fault current) and to obtain the fundamental component of the current and voltage signals by using a microcontroller (Verma and Sinha, 2016). However, this algorithm presents a compensation matrix in the frequency domain which reduces the accuracy current and voltage signal extraction which is a major setback in the algorithm. Fast phasor calculation algorithm was also pulsed (Arpanahi et al., 2022; Chen et al., 2022). This algorithm uses the matrix pencil method in extracting the fault current and voltage waveform (Wang et al., 2014).

In the past, different composition of the distance protection has been put forward. For example, a directional comparison distance protection scheme using average superimposed components of voltage and currents has been proposed (Hashemi et al., 2013). The current and voltage values are approximately zero under the normal operating condition and none zero value during a fault. The algorithm provides fast fault detection in less than half cycle time and almost 100% coverage of the line. However, this approach suffers from inherent inaccuracy due to the application of the resistance – inductance (R – L) type line model and complexity in protection criterion. An impedance differential protection scheme for pilot protection of transmission lines using the voltage and currents of both local and remote ends to calculate the differential impedance (Tohid et al., 2015). The proposed scheme is capable of fast discrimination between internal and external faults and eliminates the problem of line capacitive charging current and source impedance strength which are the challenges of the conventional scheme. However, the scheme requires a reliable communication channel for data transmission. A pilot distance protection scheme based on the fault component integrated power was used as a criterion for discrimination between internal and external faults was developed by (Tohid et al., 2014). As the integrated power is a sum of active powers which are injected into the transmission line from both ends, the integrated power is divided into pre-fault and post fault powers and the difference between the two values is called the faulty component. When there is a fault, the pre-fault power is equal to the active losses of lines while fault component integrated power is equal to zero. But when a fault occurs, it changes from its zero value to a non – zero value. The method is able to quickly discriminate the normal condition, internal fault and external fault. A technique for transmission line protection scheme based on alienation coefficients for current signals was also developed (Masoud and Mahfouz, 2010; Shaik et al., 2014; Rathore et al., 2021). The fault selection algorithm is based on alienation technique of two half successive cycles with the same polarity and used only three lines current measurement available at the relay location. This algorithm was purely for transmission system containing just one transmission line linking two buses alone. A high speed power line protection scheme was proposed using High – Speed Directional and fault Type Selection (HSD-FTS) algorithm (Benmouyal et al., 2004; Yadav and Thoke, 2011; Piesciorovsky et al., 2022). This used a high-speed distance element which is a logical system for its operation. This algorithm prevents zone 1 element overreach especially in series compensated transmission lines.

Despite all these research works carried out on the distance relay and DPS, the accuracy at which these relay trip in their protective zones have not been examined. Hence, this paper investigates the accuracy of the DPS in terms of tripping zones for the occurrence of different faults types and impedance on an 11kV distribution power system.

Also available online at https://www.bayerojet.com
2. METHODOLOGY

2.1 Modelling of the Distance Relay/Protection Scheme

Consider the 3-phase line shown in Figure 1 with voltage $E_a, E_b, and E_c$ for the 3 phases and $I_a, I_b, and I_c$ are the current flowing in the phases respectively with line impedance Z.

![Image of three-phase line with fault](https://www.bayerojet.com)

Figure 1: Three Phase line with fault

Applying the sequence component network for a LG fault, if the bus voltage is $V_a, V_b, and V_c$ for the 3 phases of the bus

$$V_a = V_a^0 + V_a^1 + V_a^2$$

If the bus voltage is $V_a, V_b, and V_c$ for the 3 phases of the bus

$$V_a = I_a Z_1 + I_a Z_2 + I_a Z_0$$

Equation (2) can be rewritten as

$$V_a = I_a Z_1 + I_a Z_2 + I_a Z_0 + I_a Z_0 - I_a Z_1$$

or

$$V_a = (I_a + \frac{Z_0 - Z_1}{Z_1} I_a) Z_1$$

Hence,

$$Z_{seen} = \frac{V_a}{I_a + \frac{Z_0 - Z_1}{Z_1} I_a Z_0}$$

Equation (5) can be written as

$$Z_{seen} = \frac{V_a}{I_a + K_0 I_c Z_0} = \frac{V_a^0 + V_a^1 + V_a^2}{I_c + K_0 I_c Z_0}$$

Where

$$K_0 = \frac{Z_0 - Z_1}{Z_1}$$

Also available online at https://www.bayerojet.com
Similar to Equation (7), for faults involving line ‘b’ and ‘c’ to ground are respectively,
\[Z_{seen} = \frac{v_b}{i_b + K_d i_b} = \frac{v_b^1 + v_b^2}{i_c + K_d i_c} \] (8)
\[Z_{seen} = \frac{v_c}{i_c + K_d i_c} = \frac{v_c^1 + v_c^2}{i_c + K_d i_c} \] (9)

Again, applying the sequence components for a LL fault between ‘a’ and ‘b’, the potential between lines ‘a’ and ‘b’ is \(V_a - V_b \) and the resultant current between the lines is \(I_a - I_b \).

Then the impedance seen is
\[Z_{seen} = \frac{v_a - v_b}{I_a - I_b} \] (10)

Taking Kirchoff’s voltage law (KVL) from bus 1 to bus 2 as shown in Figure 1,
\[V_a^1 - I_a Z_1 - I_a Z_2 - V_a^2 = 0 \] (11)
or
\[V_a^1 - V_a^2 = (I_a - I_a^1) Z_1 \text{ as } Z_1 = Z_2 \] (12)

Impedance seen by the distance relay is therefore
\[Z_{seen} = \frac{v_a^1 - v_a^2}{I_a - I_a^1} \] (13)

Similarly, for LL fault between ‘b’ and ‘c’
\[Z_{seen} = \frac{v_b - v_c}{I_b - I_c} = \frac{v_b^1 - v_c^2}{I_b^1 - I_c^2} \] (14)

And for fault between phases ‘a’ and ‘c’
\[Z_{seen} = \frac{v_a - v_c}{I_a - I_c} = \frac{v_a^1 - v_c^2}{I_a^1 - I_c^2} \] (15)

For a LLG fault between lines ‘b’ and ‘c’ to ground and applying the sequence components on Figure 1,
\[V_b = V_d^0 + a^2 V_d^1 + a V_d^2 = V_c = V_d^0 + a V_d^1 + a^2 V_d^2 \] (16)

And the fault current that flows in the lines ‘b’ and ‘c’ (combined) to ground is
\[I_b + I_c = I_a^0 + a^2 I_a^1 + a I_a^2 + I_a^0 + a I_a^1 + a^2 I_a^2 \] (17)

since \(1 + a + a^2 = 0 \), rewrite Equation (17) as
\[I_b + I_c = 2 I_a^0 - (I_a^1 + I_a^2) \] (18)

Hence, the impedance seen by the relay is given as
\[Z_{seen} = \frac{v_b (or v_c)}{I_b + I_c} \] (19)

Using the sequence components, Equation (19) is written as
\[Z_{seen} = \frac{v_b^0 + a v_b^1 + a^2 v_b^2}{2 I_a^0 - (I_a^1 + I_a^2)} \] (20)

In same way, for lines ‘a’ and ‘c’ to ground,
\[Z_{seen} = \frac{v_a (or v_c)}{I_a + I_c} \] (21)

Lines ‘a’ and ‘b’ to ground, impedance seen is
\[Z_{seen} = \frac{v_a (or v_b)}{I_a + I_b} \] (22)

For faults involving all 3 phases, the impedance seen by the relay is simply
\[Z_{seen} = \frac{v_a^1}{I_a^1} \] (23)

By combining Equations 6, 8, 9, 13, 14, 15, 20, 21, 22 and 23, one can represent the command control/model diagram of the protective system model as shown in Figure 2. The truth table of the operation of Figure 2 is presented on Table 1.

Also available online at https://www.bayerojet.com
Figure 2: Command control/model diagram of the conventional protective system
Table 1: Truth table for the logic operation of the distance relay

<table>
<thead>
<tr>
<th>A_{LG}</th>
<th>B_{LG}</th>
<th>C_{LG}</th>
<th>Y_{LG}</th>
<th>AB</th>
<th>AC</th>
<th>BC</th>
<th>Y_{LL}</th>
<th>ABG</th>
<th>ACG</th>
<th>CBG</th>
<th>Y_{LLG}</th>
<th>3Φ</th>
<th>$Y_{3\Phi}$</th>
<th>0/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Using Boolean algebra, the logic equations for the operation of the distance relay as presented in Figure 1 are:

\[
A_{LG} + B_{LG} + C_{LG} = Y_{LG}
\]

\[
AB + AC + CB = Y_{LL}
\]

\[
ABG + ACG + BCG = Y_{LLG}
\]

\[
3\Phi + 3\Phi = Y_{3\Phi}
\]

\[
O/P = Y_{LG} + Y_{LL} + Y_{LLG} + Y_{3\Phi}
\]

Where A_{LG} is line A to ground fault, B_{LG} is line B to ground fault, C_{LG} is line C to ground fault.

3. RESULTS AND DISCUSSION

3.1 Simulation of the model in PSCAD

To test the model developed and see how change in fault resistance value affect the trip location in the protection of a distribution line using the distance relay, we consider a short 11kV distribution line (shown in Figure 3) of length 43km having just two protection zones – 1 and 2.
Zone 1 gives instantaneous protection to 80% of the 43km line (up to 34.4km) while Zone 2 acts as a backup to Zone 1 for the first 80% of the line and also protect the remaining 20% of the line (34.4km to 43km) and may include some time delay and the line parameters are presented in Table 2.

Table 2: Line parameters

<table>
<thead>
<tr>
<th>Length of Line</th>
<th>43km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Positive sequence resistance (same as negative sequence)</td>
<td>0.02582 × 10⁻³ (Ω/m)</td>
</tr>
<tr>
<td>Line Positive sequence reactance (same as negative sequence)</td>
<td>0.1291 × 10⁻³ (Ω/m)</td>
</tr>
<tr>
<td>Line Positive sequence capacitance (same as negative sequence)</td>
<td>210.10 (Ω/Ω⁻¹)</td>
</tr>
<tr>
<td>Line Zero sequence resistance</td>
<td>0.1365 × 10⁻³ (Ω/m)</td>
</tr>
<tr>
<td>Line Zero sequence reactance</td>
<td>1.021 × 10⁻³ (Ω/m)</td>
</tr>
<tr>
<td>Line Zero sequence capacitance</td>
<td>423.251710 (Ω/Ω⁻¹)</td>
</tr>
<tr>
<td>Fault impedance used</td>
<td></td>
</tr>
<tr>
<td>Fault ON resistance</td>
<td>10Ω</td>
</tr>
<tr>
<td>Fault OFF resistance</td>
<td>1.0E6Ω</td>
</tr>
</tbody>
</table>

To design the impedance circle diagram in PSCAD, we take the total impedance Z_t for the length of the line,

$$Z_t = 43(0.02582 + j0.1291)Ω = (1.11026 + j5.5513)Ω = 5.66∠78.7°Ω$$ \hspace{1cm} (29)

The protection system uses a CT and PT with turn ratio of 300/1 and 500/1 respectively. Thus, transferring this total impedance in the primary sides of the instrument transformers to their secondary sides,

$$Z_{t_{sec}} = \frac{300/1}{500/1} \times 5.66∠78.7° = 3.396∠78.7°Ω$$ \hspace{1cm} (30)

Hence, Zone 1 covers impedance up to 0.8 × 3.396∠78.7°Ω = 2.7168∠78.7°Ω while Zone 2 covers the entire length of 3.396∠78.7°Ω.

We shall investigate the effect of using fault resistance values of 0.1Ω, 0.5Ω, 1Ω, 5Ω and 10Ω for the same fault location for the same type of fault and see the effects for LL, LLG and LLL faults between the same phase sequences at each point in time, and see how variations in fault impedance affect the tripping zones. We consider faults occurring at Zone 1, precisely at 30 km on the line.

On simulating the system in PSCAD after the introduction of the faults, the impedance circle diagrams below show...
the region where the tripping occurred. Figure 3a to 3e shows the zone where the tripping takes place for a LG

Figure 3a: LG fault of 10Ω
Figure 3b: LG fault of 0.1Ω
Figure 3c: LG of 1Ω
Figure 3d: LG fault of 5Ω

Also available online at https://www.bayerojet.com
For a LL (AB) fault, the impedance circle diagrams are presented in Fig 4a to 4e below:

Figure 4a: LL fault of 1Ω
Figure 4b: LL fault of 5Ω
Figure 4c: LL fault of 0.1Ω
Figure 4d: LL fault of 0.5Ω

Also available online at https://www.bayerojet.com
Table 3: Tripping zones for different faults with different faults impedance on the line.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Fault impedance (Ω)</th>
<th>Fault Type</th>
<th>Trip Zone</th>
<th>Fault Location (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1Ω</td>
<td>LG</td>
<td>Zone 2</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LL</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LLG</td>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Phase</td>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5Ω</td>
<td>LG</td>
<td>Zone 2</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LL</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LLG</td>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Phase</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1Ω</td>
<td>LG</td>
<td>Zone 2</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LL</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LLG</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Phase</td>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5Ω</td>
<td>LG</td>
<td>Zone 2</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LL</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LLG</td>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Phase</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10Ω</td>
<td>LG</td>
<td>Zone 1</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LL</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LLG</td>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Phase</td>
<td>Zone 1</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 shows the summary of different faults with different faults impedance occurring at 30km of the line under analysis which is supposed to be zone 1 as the line is 43m long.

3.2 Discussion of results

It was observed that for a LLG fault (between ABG), occurring at 30km on the line (Zone 1), the distance relay/protection system tripped inaccurately in Zone 2 for a fault impedance of 0.1Ω, 0.5Ω and 5Ω and tripped accurately in Zone 1 for fault impedance of 1Ω, and 10Ω. Similarly, for a LG fault (between AG), the distance relay/protection system tripped in Zone 1 for a fault impedance of 10Ω alone and tripped inaccurately in Zone 2 for fault impedance of 0.1Ω, 0.5Ω, 1Ω and 5Ω. Also, it was observed that for a fault impedance of 0.1Ω at same location, the system tripped at Zone 1 for LL and 3 phase faults and tripped in Zone 2 for LG and LLG faults. As stated previously, on the secondary side of the CT and PT, Zone 1 covers impedance up 2.7168<78.7°Ω while Zone 2 covers impedance above 2.7168<78.7°Ω to impedance up to 3.396<78.7°Ω. Beyond this value is not included in the protection as it is not within the line of interest. Hence, when fault of any type and fault impedance occurred at any location, the tripping location depend on the Thevenin impedance at the fault location calculated or seen by the
relay. If the value is up to 2.7168∠78.7°Ω, the tripping will occur in Zone 1. If the value is above 2.7168∠78.7°Ω but up to 3.396∠78.7°Ω, then it will trip in Zone 2.

4. CONCLUSION

From the study carried out on distance protection schemes of power distribution systems using PSCAD, the impedance seen by the distance relay/protection scheme is the effective or Thevenin impedance at that point of fault. Hence, the following remarks on distance protection schemes can be made.

(i) The distance protection schemes are characterized by indiscriminate tripping in the protection zones. For example, a fault can occur in Zone 1 and may trip in Zone 2 and vice versa. This can be regarded as inaccurate tripping in the zones.

(ii) Fault impedance value influence the tripping zone or location of such protection schemes. For example, a 0.1Ω LL fault occurring in a location in Zone 1 may trip in that Zone 1 while the same type of fault (LL), occurring at that same location in Zone 1 but a different fault impedance may trip in Zone 2.

(iii) The type of fault also affect the tripping location. For example, for a fault impedance of 0.1Ω, the system tripped in Zone 1 for LL and 3 phase faults and tripped in Zone 2 for LG and LLG faults at same location and impedance.

REFERENCES

Also available online at https://www.bayerojet.com

