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ABSTRACT 

 

Foams are cellular materials that have unique mechanical properties. The geometric properties of these structures 

have been proven to be responsible for their unique mechanical properties. Accurately reproducing these geometric 

properties in modeling and simulation remains a challenge for researchers.This paper provides details on the geo-

metric modeling techniques used to model foams and investigates the effects of the initial seed points on the geomet-

ric and mechanical properties. Unit cell repetition methods such as the Kelvin cell,and Gibson-Ashby cell as well as 

Voronoi-based models such as Poisson Voronoi, Hardcore Voronoi, and Laguerre Voronoi werepresented. The Vo-

ronoi models were further investigated, and their effectiveness in reproducing the geometric properties of foams and 

predicting their elastic properties was evaluated.Both the Poisson Voronoi and Hardcore Voronoi models overesti-

mated the elastic properties by 169% and 25%, respectively.The Laguerre Voronoi model was the most accurate in 

predicting the elastic properties, with an absolute error of 6.5%. 

Keywords:Geometric modeling; Foams; Elastic properties, Cell wall thickness; Voronoi tessellations; Voronoi 

foams 

1. INTRODUCTION 
 

Originally developed in the aerospace industry as a core 

for structural sandwich panels, metallic foams can be 

used in almost every lightweight and impact absorption 

engineering application, owing to their high 

strength-to-weight ratio.Recently, they have become sa-

lient materials in various engineering applications. This 

popularity of foams is attributed to their microstructure, 

which has been categorized as stochastic yet with some 

trends that can be captured using statistical distributions. 

A typical foam is characterized based on its cell types 

being open (open-cell foam) or closed (closed-cell foam), 

cell morphology, void density, and properties of the base 

material used during the foaming process.Cell morphol-

ogy and void density are the leading parameters that af-

fect the mechanical response of foams (Gibson & Ashby, 

1982a, 1997a); hence, there is a need for an effective 

geometric model that captures these parameters. 

Geometric modeling of metallic foams is not limited to 

computer-tomography (CT) reconstruction, although CT 

models produce good results, they are characterized by 

challenges in data acquisition and image analysis 

post-processing (Bici et al., 2017; Jeon et al., 2010; 

Youssef et al., 2005). The modeling strategies employed 

by researchers can be categorized into three types: unit 

cell replication, Voronoi-based tessellations, and unit cell 

subtraction.Unit cell replication involves the use of sim-

ple geometries arranged in a specific pattern to form an 

array.These unit cells include the cubic cell (Gibson & 

Ashby, 1997b), Kelvin cell (Gong et al., 2005), Gib-

son-Ashby cell(Gibson & Ashby, 1982b, 1997b), and 
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Weaire-Phelan cell(Weaire& Phelan, 1994), which were 

analyzed using classic beam and shell theo-

ry.Voronoi-based tessellations such as Poisson Voronoi 

(Zhang et al., 2016a, 2017), Hardcore Voronoi (Li et al., 

2014; Song et al., 2010a; Tang et al., 2014), and La-

guerre Voronoi tessellations are of interest to researchers 

because of the degree of randomness and because they 

simulate the manufacturing process of the foam, which is 

responsible for the microstructure and mechanical prop-

erties of the foam. 

This study aims to compare the geometrical properties 

and mechanical responses of foam models produced by 

each modeling technique. First, the modeling strategies 

are described. Second, models were generated, and their 

properties were compared.Finally, a method for improv-

ing the accuracy of the model in predicting the mechani-

cal response was proposed. 

2. LITERATURE REVIEW 

 

2.1. Overview of Foam Models  

In the geometric modeling of metallic foams, unit cell 

replication is the most widely used method, owing to its 

simplicity and ease of numerical analysis. The process 

involves the arrangement of a simple cell unit in a par-

ticular  

pattern to approximate the geometrical properties of the 

foam. On the other hand, Voronoi foam models are based 

on a space division technique that creates regions based 

on the position of the initial seed points.These models 

are discussed in the following subsections. 

2.2. Kelvin Cell Model 

Kelvin cells are of interest to researchers in many fields 

because of their minimal surface area per unit volume. It 

was discovered by Lord Kelvin in 1887 in the studies of 

bubble packing patterns. For more than a century, Kelvin 

cell has been believed to be a space-filling cell that 

minimizes the surface area per unit volume (Gibson & 

Ashby, 1997b). The unit cell (Fig. 1) consists of twen-

ty-four vertices, eight hexagonal, and six quadrilateral 

faces. It has been used in studies of the mechanical 

properties of foams. 

Song et al. (2010b) studied the dynamic crushing behav-

ior of foams using the Kelvin model.The results indicat-

ed that increasing the cell irregularity improved both the 

densification strain energy and plateau stress; at a low 

impact velocity, the deformation bands first appeared in 

the middle of the foam.Weaire Phelan's cell model is a 

modified version of the Kelvin cell with two 12-sided 

polyhedra and six 14-sided polyhedra that has a lower 

surface area per unit volume than the Kelvin cell. 

 

 

Fig. 1 Kelvin cell (Abdullahi et al., 2019) 

 

2.3. Gibson-Ashby Model 

Gibson and Ashby (1997b) created a new model that can 

be applied to both closed-cell and open-cell foams by 

choosing to close or open the faces of the unit cell.The 

model was developed from classic cube structures with 

12 edges perpendicular to the adjacent pairs.The model 

(Fig. 2) is isotropic in all directions and has a uniform 

cross-section, making it useful for determining the linear 

elastic behavior of foams. The response for open-cell 

foams suggested by Gibson and Ashby (1997b) is indi-

cated in equation (1) 
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Where C is approximately equal to 1, E
*
 is Young’s 

modulus of bulk foam, Es is Young’s modulus of the 
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foam bulk material, ρ
*
 is the foam density, and ρsis the 

density of the bulk material.Using this model, the authors 

found that the relative density and bubble pore structure 

are factors that affect the mechanical properties of foams. 

 

Fig. 2 Gibson-Ashby model(Gibson & Ashby, 1997b): (a) open-cell and 

(b) closed-cell 

 

2.4. Weaire-Phelan Model 

The Weaire-Phelan model is a widely used method for 

modeling foams. It is based on the concept of dividing 

space into cells with equal volumes, where the cells are 

irregular polyhedra that share faces and edges with 

neighboring cells.This model is particularly useful for 

simulating foams with large cells because it allows for an 

efficient and accurate representation of the foam struc-

ture. The Weaire-Phelan model has been used in numer-

ous applications, including materials science, engineer-

ing, and architecture, and has provided valuable insights 

into the behavior of foams under various mechanical and 

environmental conditions(Weaire& Phelan, 1994). 

2.4. Voronoi Models 

Voronoi models are generated using a space division 

technique that creates regions from a group of points.It 

has the feature that any point placed within a region will 

be closer to the region's point than any other point in the 

space.The cells shorten the distance between themselves 

and the seeds. G. F. Voronoi proposed this method in 

1905.   

Let 𝑃 = {𝑝1, 𝑝2, 𝑝3, . . . . . } be a set of points in ℝ3, a 

Voronoi cell (v-cell) corresponding to any point 𝑝𝑖 in 

the set is defined as: 

 

𝑉𝑐(𝑝𝑖) = {𝑝 ∈ ℝ3 :‖𝑝 − 𝑝𝑖‖ ≤ ‖𝑝 − 𝑝𝑗‖ ∀ 𝑗 ≠ 𝑖}  (2) 

 

Where 𝑉𝑐 is the Voronoi cell corresponding to a point 

𝑝𝑖, and 𝑝𝑗 is any point outside the Voronoi cell. The 

Voronoi model was created in the field of computational 

geometry and is mostly utilized in the study of 2D foams 

(Andrews & Gibson, 2001; Torquato et al., 1998). The 3D 

Voronoi model simulates the growth process of voids in 

the manufacturing process and is geometrically and top-

ologically identical to foams resulting from the growth 

process, making it a perfect model for studying the me-

chanical properties of real foams (Huang & Gibson, 

2003). 

 

3. MATERIALS AND METHODS 

 

The material used was closed-cell ALPORAS foam with 

a 4.27 mm average cell diameter and a standard devia-

tion of 0.99 mm.The dimensions of thespecimen were 35 

mm × 35 mm × 35 mm.The cell wall thickness was dis-

tributed with a mean of 0.18 and a standard deviation of 

0.92 mm. The relative density of the foam is 12.33%. All 

data for the foam specimens were extracted from the 

experimental work of Jang et al. (2015).Numerical mod-

els were then generated based on the extracted infor-

mation using different Voronoi tessellation strategies to 

determine the effect of the seed generation method on 

geometric parameters and mechanical response. 

Because we were interested in the effect of seed points in 

Voronoi foams, we considered three (3) types of Voronoi 

tessellations to generate and analyze the foam mod-

els.The Voronoi tessellations were Poisson, Hardcore, 

and Laguerre.The following subsections describe the 

tessellations and how they are used to generate the foam 

models in this study. 

3.1. Poisson Voronoi Tessellations 

Poisson Voronoi (PV) tessellation is a type of Voronoi in 
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which the seed position is generated through a homoge-

neous Poisson point process, and the seeds and their re-

spective Voronoi cells possess spatial randomness with 

no trend and share no interaction between seeds.Cell 

growth started from the seed position and stopped when 

the cell boundary came into contact with another cell 

boundary.Each point in P creates a Voronoi cell (v-cell), 

and all the v-cells combine to form a Voronoi diagram 

(VD), which divides the three-dimensional space into an 

array of convex, space-filling, nonoverlapping polyhe-

drons with planar faces.A Poisson Voronoi Diagram 

(PVD) generated with 100 seeds in a plane (2D) of 30 × 

30 mm is shown in Fig. 3. 

 

 
Fig. 3. Poisson Voronoi Diagram with 100 seeds. 

 

The Poisson Voronoi Diagram (PVD) is characterized by 

a random cell size distribution with wide margins and a 

higher number of struts per vertex.In 3D, the PVD has an 

average number of faces per cell of 15.5 and an average 

number of edges per face of 5.2 (Wejrzanowski et al., 

2013a). 

 

In this work, Poisson Voronoi models are generated as 

follows: First, the number of seed (points) N is calculat-

ed as  

𝑁 =
𝑉

4
3⁄ 𝜋𝑟3  (3) 

where V is the volume of the domain and r is the average 

radius of the sphere.N random points are then generated 

within the domain and fed to the Neper software, a poly-

crystal generation and meshing library (Quey et al., 

2011), for the construction of the Voronoi tessellation. 

 

3.2. Hardcore Voronoi Tessellations  

Hardcore Voronoi tessellation is a special type of Voro-

noi tessellation in which the seed points are controlled to 

have a distance between each other, that is, each seed 

should be at a distance of at least a particular value 

known as the restricted distance.The algorithm generates 

random points sequentially, while testing the minimum 

restricted distance constraint.A point is accepted as a 

seed point for constructing a Voronoi diagram only if its 

distance from the previous points is greater than the de-

fined minimum restricted distance (Falco et al., 2017; 

Falco et al., 2014; Falco, Jiang, et al., 2017a; Fritzen et 

al., 2009).It has been used in the geometric modeling of 

ceramic and metallic microstructures. The restricted dis-

tance (h) sometimes called hardcore radius is given by 

the expression 

‖𝑝𝑖 − 𝑝𝑗‖ = √∑(𝑝𝑖𝑘
− 𝑝𝑗𝑘

)
2

3

𝑘=1

> ℎ  

∀(𝑖, 𝑗) = 1,2, . . . . 𝑁𝑁 : 𝑗 ≠ 𝑖      (4) 

 

Where 𝑝𝑖 and 𝑝𝑗 are points in the space, and 𝑘desig-

nates the x, y, and z componentsof the coordinates of the 

points. In 2D,𝑘 is limited to 2 (i.e., x and y). The Hard-

core Voronoi approach provides control over the spheric-

ity of cells.Sphericity refers to the ratio of the surface 

area of a sphere with the same volume to the cell’s sur-

face area. A Hardcore Voronoi model in a 2D plane is 

shown in Fig. 4. 
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Fig. 4. A Hardcore Voronoi Diagram with 100 seeds and h=2mm 

 

In this work, Hardcore Voronoi was constructed in a sim-

ilar way to the Poisson Voronoi model, except that the 

random points were generated with a constraint on the 

hardcore distance and then fed to the Neper library. 

 

3.3. Laguerre Voronoi Tessellations 

 Laguerre Voronoi tessellation (LVT) utilizes the intro-

duction of weights to seed points.Researchers have used 

the packing of spheres with a predetermined volume dis-

tribution (Chen et al., 2015; Falco, Jiang et al., 2017b; 

Nie et al., 2017a, 2017b; Redenbach et al., 2012; Su et 

al., 2018; Wejrzanowski et al., 2013b)), wherethe center 

and radius of the spheres serve as the center and weight 

of the seed points, respectively.The distance between two 

neighboring cells, called the power distance, is perpen-

dicular to the cell boundary plane.The power distance 

replaces the Euclidean distance in Poisson Voronoi. LVT 

can be described for any point 
i

p  in the set 𝑃 =

{𝑝1, 𝑝2, 𝑝3, . . , 𝑝𝑛} a weighted 
i

r  is provided to get a 

weight set 𝑟 = {𝑟1, 𝑟2, . . . . . , 𝑟𝑛}, and the power distance 

between ip and any point q is given by  𝑑𝐿(𝑝𝑖 , 𝑞) =

{[𝑑𝑣(𝑝𝑖 , 𝑞)]2 − 𝑟𝑖
2}

1

2.  A v-cell corresponding to a point 

ip is defined as  𝑣𝐿(𝑝𝑖) = {𝑝|𝑝 ∈ 𝑅3, 𝑑𝐿(𝑝𝑖 , 𝑞) <

𝑑𝐿(𝑝, 𝑝𝑗), 𝑖 ≠ 𝑗} (5) 

 

Where 𝑣𝑙 is the Laguerre Voronoi cell corresponding to 

a point 𝑝𝑖 , and 𝑞  is any point outside the Voronoi 

cell.The cells inherit the volume distributions of the 

spheres, which allows tuning of the geometric properties 

of the model by calibrating the input parameters, such as 

the volume distribution.A Laguerre Voronoi model in a 

two-dimensional (2D) plane is shown in Fig. 5. 

 

Fig. 5. Laguerre Voronoi diagram of 100 seeds with a logarithmic 

normal distribution (µ=4.38, σ=0.75) 

In this work, the Laguerre Voronoi model is generated by 

first packing spheres with predetermined cell diameters 

into the domain.The drop and roll technique was used to 

generate spheres using the Molecular Dynamic software 

LIGGHTS (Kloss et al., 2012).The procedure is summa-

rized as follows: 

i. Generate spheres with predetermined cell diam-

eter distribution 

ii. Drop spheres into the domain using gravitational 

force.  

iii. Consider collision forces with other spheres.  

The centers and radii were fed to the NEPER library to 

construct the Laguerre Voronoi model.The entire process 

is illustrated inFig. 6 
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Fig. 6. Generation of Laguerre Voronoi 

 

3.4. Numerical Simulation 

The models were meshed with 4-node and 3-node shell 

elements using HyperMesh software (Altair, USA), and 

further subjected to a finite element compressive test to 

estimate the elastic properties in ABAQUS (Dassault 

Systems, USA).Each model was placed between two 

rigid plates; the bottom plate (red) was fixed, whereas 

the top plate (blue) was moved to a distance under qua-

si-static conditions, as shown in Fig. 7.  

 
Fig. 7 Loading and boundary conditions 

The relative density is controlled by assigning a uniform 

thickness to the shell elements, as shown in Equation 6. 

𝑡 =
𝑉𝑠

∑ 𝑆𝑖
⋅ (

𝜌∗

𝜌𝑠
)         (6) 

Where Vs is the volume of the domain, Si is the surface 

area of the i
th

 element, ρ
*
 is the foam density, and ρsis the 

bulk material density.The reaction forces and displace-

ments of the top plate were recorded.The Young’s mod-

ulus of the model was calculated as follows: 

𝐸∗ =
(

𝐹

𝐴
)

(
𝛿

𝐿
)
          (7) 

Where F is the reaction force on the reference node of 

the rigid plate, A is the area of the top surface of the 

model, δ is the distance moved by the rigid plate, and L 

is the original length of the model. 

 

4. RESULT AND DISCUSSION 

 

4.1. Geometric Properties 

The main parameters responsible for the mechanical be-

havior of foams after the relative density are the cell size 

(dc), number of faces per cell (Nf), number of edges per 

face (Ne), and cell wall thickness (t) distribution. To 

identify these parameters, the foam models were con-

structed based on the three (3) types of Voronoi tessella-

tions as shown in Fig. 8.The parameters extracted from 

the models are listed in Table 1. 

 

 

Fig. 8. The constructed (a) Poisson Voronoi (b) Hardcore Voronoi (c) 

Laguerre Voronoi models 

Table 1 Geometric parameters of Voronoi-based models 

Model Nf Ne Surface 

Area (mm2) 

t (mm) dc (mm) 

Foam 

specimen 

14.00 5.00 - 0.1830 4.27 

Poisson 

Voronoi 

13.80 5.15 33612.80 0.1573 4.17 

Hardcore 

Voronoi 

13.90 5.15 31713.98 0.1667 4.04 

Laguerre 

Voronoi 

13.02 5.07 28593.76 0.1849 4.26 

 

One interesting aspect that emerged from the analysis is 
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that the Laguerre Voronoi models have the lowest abso-

lute error compared to the experimental results except in 

Nf,which is due to the pruning of smallfaces employed 

by Neper software.This is attributed to the use of a pre-

determined seed distribution and sphere packing that was 

introduced in the Laguerre Voronoi models to mimic the 

foam manufacturing process.The most striking observa-

tion that emerged from the analysis was the overestima-

tion of the parameters using the Poisson Voronoi mod-

el.This is because seed points are generated randomly; 

therefore, there is no control over where the seed points 

are inserted, which might result in cell faces that are too 

small, thereby affecting the overall mechanical properties. 

Hardcore Voronoi models are somewhat in between the 

other two models. This is because they have control over 

the seed points' position to some degree, that is, they are 

not completely random (Poisson) or completely con-

trolled (Laguerre).The results confirm that the seed gen-

eration method and positioning affect the geometric 

properties of the Voronoi foams. 

 

Fig. 9Absolute error in predicting the geometric parameters of the 

specimen 

4.2. Mechanical Properties 

The relative elastic modulus was calculated as the ratio 

of Young’s modulus of the foam model to that of the bulk 

material.Table 2 presents the results. 

 

Table 2: Relative modulus of the Voronoi-based models 

Model Relative Modulus E*/Es (%) 

Specimen (Jang et al., 2015). 1.53 

Poisson Voronoi 4.13 

Hardcore Voronoi 1.92 

Laguerre Voronoi 1.43 

 

The results indicated that the Laguerre Voronoi models 

had the closest relative Young’s modulus to the experi-

mental results of the foam specimen.This is attributed to 

the ability of the Laguerre Voronoi tessellation to mimic 

the geometric properties of the real foam.These findings 

are consistent with those of earlier studies, such as that 

of Zhu et al. (2001), who investigated the effect of cell 

irregularity on the properties of 2D Voronoi honey-

combs.Unlike the work of Zhu et al. (2001), this work 

considered Voronoi foams in 3D. 

The absolute error in predicting the relative modulus of 

the specimen is shown in Fig. 10, which shows that the 

Laguerre Voronoi model has the smallest error of ap-

proximately 6.5%, whereas the Hardcore and Poisson 

Voronoi models have errors of 25% and 169%, respec-

tively.Overall, these results suggest that the seed points 

generation method and position have a significant effect 

on the properties of the foam model. Therefore, re-

searchers should pay attention when choosing the appro-

priate model for simulations. Based on the results the 

Laguerre Voronoi model is the most suitable for accurate 

prediction of the elastic properties.   

 

 

Fig. 10 Absolute error in predicting the relative modulus of the 

specimen 
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5. CONCLUSION   
 
In this paper, an overview of various geometric modeling 

strategies for closed-cell foams is presented. The method 

of constructing the Kelvin model, Gibson and Ashby 

model, Poisson Voronoi, Hardcore Voronoi, and Laguerre 

Voronoi models were analyzed and discussed in terms of 

their geometric parameters. Additionally, the Voro-

noi-based models were meshed and subjected to a fi-

nite-element compressive test, and the results were com-

pared with the experimental values of the specimens. The 

Laguerre Voronoi model was found to be the most accu-

rate in predicting the elastic properties of the foam, with 

an absolute error of 6.5%. The Poisson Voronoi and 

Hardcore Voronoi models overestimated the elastic 

properties by 169% and 25%, respectively. Therefore, the 

Laguerre Voronoi model can be considered a suitable 

option for modeling closed-cell foams in future studies. 

These findings substantially add to our understanding of 

Voronoi foam modeling and highlight the importance of 

the seed point generation method in the construction of 

Voronoi foams. 
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