ESTIMATION OF DC SERVOMOTOR PARAMETERS USING GREY WOLF, WHALE AND GENETIC ALGORITHM OPTIMISATION TECHNIQUES

Publication Date : 09/10/2022


Author(s) :

Nyong-Bassey Bassey Etim, Epemu Ayebatonye Marttyns.


Volume/Issue :
Volume 17
,
Issue 3
(10 - 2022)



Abstract :

This paper investigates the use of time domain response with recent meta-heuristic optimisation techniques such as; Grey wolf optimisation, Whale optimisation algorithm, and Genetic algorithm for the estimation of the parameters of a servomechanism with insufficient datasheet information. First, in order to estimate the servomechanism’s closed loop position second order transfer function, the known servo gear mechanism and unknown speed first order transfer functions were used. In the experimental investigation, the average time constant of the Servomechanism was found to be 162mS for both forward and reverse rotations. Thereafter, the meta-heuristic algorithms were used in MATLAB to simulate the identified position closed loop velocity feedback transfer function in order to obtain the Servomechanism’s electromechanical parameters. The simulation and experimental response of the servomechanism were in excellent agreement, with the Genetic and Whale optimisation algorithms having the best and worst root mean squared error fitness scores of 0.00706 and 1.90374 respectively.


No. of Downloads :

11


About BayeroJet

The new Bayerojet Journal is designed to be able to manage the increasing number of published articles. The new system will allow the publishers as well as the Bayerojet team to make publishing more efficient. If you wish to publish an article it will be very easy. All you have to do is to submit your paper online and wait to the review before it will be finally published. You can manage your articles and send new versions at any time. Browse through our page to find out more.